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Umesh Vazirani

1 Introduction

The search for quantum algorithms that achieve exponential speedups beyond the framework of the
hidden subgroup problem is a fundamental challenge in quantum computation. We report three di-
rections for the design of such algorithms. The first is inspired by the fact that the fourier transform
interacts well with quadratic surfaces (like parabolic mirrors) to design quantum algorithms for hidden
non-linear structures [1]. The second set of algorithms [2,3] are based on the Temperly-Leib algebras
and approximations of tensor networks, and yield additive approximations to the Tutte polynomial.
These are relevant to estimating quantities of interest in statistical mechanics and in counting com-
plexity. The third gives a span program based quantum algorithm that achieves quadratic speedup
for the evaluation of boolean formulae [4].

One of the most important practical obstacles to quantum computers is the difficulty of making
the computer robust against environmentally induced decoherence. We report a new, rigorous proof
for a Knill type fault-tolerance scheme, based on error detection rather than error correction [5]. The
noise threshold of .001 for the scheme that we rigorously establish is considerably better than the
best previous bounds using any method. In terms of computational overhead, fault tolerance schemes
based on Steane’s distance three code are particularly efficient. In [6] we give the first rigorous proof
of a noise threshold for a fault tolerant scheme based on a distance three code.

In [7], we introduce a new technique for analyzing local Hamiltonians — the detectability lemma.
We show how to generalize the first step of Dinur’s proof of the classical PCP theorem, gap ampli-
fication, to the quantum case. Whether or not the quantum PCP theorem is true is a central open
question in Hamiltonian complexity.

We also report a number of results in quantum complexity theory. In [10] we study Quantum
NP further by attempting to generalize the Valiant-Vazirani theorem to the quantum setting. In [11]
we report a result showing that honest verifier zero knowledge can be made secure against quantum
adversaries. And in [8,9], we explore techniques for proving stronger lower bounds on quantum query
complexity.

2 Scientific Progress:

Quantum Algorithms:

The search for quantum algorithms that achieve exponential speedups beyond the framework of the
hidden subgroup problem is a fundamental challenge in quantum computation today. The methods
that work dramatically, fail equally dramatically for non-abelian groups such as the symmetric group.
We report three directions that go beyond the hidden subgroup framework for the design of quantum
algorithms.

The first direction [1] starts with shifting the focus back to the Fourier transform over abelian
groups, and to consider what other hidden structures can be revealed by abelian Fourier transforms
via constructive interference effects. We turn for inspiration to optics and acoustics, where light or
sound can be highly focused (i.e., undergo highly constructive interference) when reflected by a conic
(e.g., parabolic or elliptic) surface. To connect this idea to known quantum algorithms, observe that
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abelian hidden subgroup problems, when restricted to a vector space, can be viewed as determining
a hidden linear structure. Any subgroup of the additive group of Fd

q (q = pm a prime power) is an
Fq-linear subspace, and the cosets of this subgroup consist of parallel affine subspaces, or flats. Given a
black box function that is constant on each flat and distinct on different ones, abelian Fourier sampling
determines the hidden subspace in time poly(d log q). Pursuing the analogy with wave mechanics, our
approach is to set up black box functions that are constant on quadratic surfaces, and use interference
effects to discover properties of the unknown quadratic. More generally, we study this approach for
algebraic sets of higher degree.

The first problem we study is the hidden radius problem. In this problem, the hidden property
is the radius r of a sphere. We give an efficient quantum algorithm for determining one bit of r,
namely whether or not it is a quadratic residue, assuming that the dimension is odd. With a classical
computation, even this restricted problem requires exponentially many queries. (For the problem of
determining the other bits of r, we argue that the quantum query complexity is small.)

The second problem we consider is the hidden flat of centers problem. In this problem, the radius
of the sphere is fixed (say, at r = 1), but its center is constrained to lie in an unknown flat in Fd

q .
For example, the centers of the spheres may lie on an unknown line. For this problem, we give an
efficient quantum algorithm to determine the entire hidden flat, not just one bit of information about
it. However, this algorithm also works only when the dimension is odd. The main idea of the algorithm
is to use a quantum walk to move amplitude from the spheres to their centers. Our algorithms for
both this and the hidden radius problem make crucial use of a connection to certain exponential sums
called twisted Kloosterman sums.

Both of the above problems fall into a framework of shifted subset problems. For problems in this
class, the main idea is to define a black box function that is constant on some subset of the points in
Fqd, as well as on shifted versions of this subset, with the function taking distinct values when the
shifts are different. The goal may be either to determine some property of the basic subset, or of the
allowed shifts, or both. Typically, this will not give a well-defined black box, since different shifts of
the subset may lead to overlapping points. However, we can resolve this issue by defining the black
box carefully.

Assuming the degree of h(x) is constant, we show that the query complexity of the hidden polyno-
mial problem is typically poly(log q). We show this by considering an analog of the standard approach
to the HSP, wherein one query of the black box is used to produce a quantum state that depends on
the hidden object. Provided these states are sufficiently statistically distinguishable, it follows that
poly(log q) copies contain enough information to determine the hidden object with high probability.

The second direction, reported in [2,3], relies on the representation theory for the Temperley-Lieb
algebras to design new quantum algorithms for a combinatorial/topological question. This is a radical
new direction for quantum algorithms, since it breaks from the use of the quantum Fourier transform
as the main computational ingredient. We list a few features of the new algorithms below:

1. The works provide new quantum algorithm for the combinatorial/topological question of ad-
ditively approximating two important structures: the Tutte polynomial (and consequently the
Potts model which is a specialization of the Tutte polynomial) and the partition function of
various statistical mechanical models.

2. The works show that for certain parameters, additive approximation of both the Tutte polyno-
mial and the partition function of the statistical mechanical models are complete problems for
quantum computation.

3. Perhaps most remarkably, the works are able to move away from the unitary paradigm that
quantum computation is cast in. Specifically, both the approximating algorithms and the com-
pleteness results hold for parameters where the relevant operators are not unitary. This demon-
strates that a quantum computer can be used to address problems that don’t seem to have a
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unitary component.

4. The main tool for [2] is the representation theory for the Temperley-Lieb algebras. The main
tool for [3] are the realization of the quantities of interest as the evaluation of tensor networks.
Collectively, this is a completely new direction for quantum algorithms which, for the most part,
have used the quantum Fourier transform as the main computational ingredient.

The third direction [4] builds on the breakthrough result of Farhi, Goldstone and Gutman, to give
a quantum algorithm for evaluating formulas over an extended gate set, including all two- and three-
bit binary gates (e.g., NAND, 3-majority). The algorithm is optimal on read-once formulas for which
each gate’s inputs are balanced in a certain sense. The main new tool is a correspondence between a
classical linear-algebraic model of computation, ”span programs,” and weighted bipartite graphs. A
span program’s evaluation corresponds to an eigenvalue-zero eigenvector of the associated graph. A
quantum computer can therefore evaluate the span program by applying spectral estimation to the
graph. For example, the classical complexity of evaluating the balanced ternary majority formula is
unknown, and the natural generalization of randomized alpha-beta pruning is known to be suboptimal.
In contrast, our algorithm generalizes the optimal quantum AND-OR formula evaluation algorithm
and is optimal for evaluating the balanced ternary majority formula.

Fault-tolerance Bounds:

The value of the quantum noise threshold, or maximum tolerable gate error rate allowing reliable
quantum computation, together with the overhead required to attain it, are of considerable experi-
mental interest.

The highest current estimates for the amount of noise a quantum computer can tolerate are based on
fault-tolerance schemes relying heavily on postselecting on no detected errors. In particular, Knill has
constructed a novel fault-tolerance scheme based on very e?cient distance-two codes. Being of distance
two, his codes allow for error detection, not correction, and the scheme uses extensive postselection
on no detected errors i.e., on detecting an error, the enclosing subroutine is restarted. Knill has
estimated that the threshold for his scheme is perhaps as high as 3-6%. However, there has been no
rigorous proof that any scheme based on postselection gives even a positive tolerable noise threshold.
In [5], we report a technique to prove a positive threshold, for probabilistic noise models. The main
idea is to maintain strong control over the distribution of errors in the quantum state at all times.
This distribution has correlations which conceivably could grow out of control with postselection.
But in fact, the error distribution can be written as a mixture of nearby distributions each satisfying
strong independence properties, so there are no correlations for postselection to amplify. Indeed, with
some more care we are able to rigorously establish a noise threshold of .001, an order of magnitude
improvement upon earlier bounds using other schemes.

In terms of actual computational overhead, the most efficient quantum fault tolerance schemes are
designed using the Steane seven-qubit, distance-three quantum code. This is no doubt because its
elegant simplicity, and its small size allows for easy, efficient simulations. Although noise thresholds
are frequently estimated for such fault tolerance schemes, there has been no proof that a constant
threshold even exists for distance-three codes. In [6], we prove the existence of a constant threshold.
The proven threshold is well below estimates, based on simulations and analytic models, of the true
threshold, but at least it is now known to be positive.

Quantum PCP theorem

One of the most important results in classical theoretical computer science is the PCP theorem,
which states the following counter intuitive fact: proofs (or solutions to computational problems in
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the complexity class NP) can be cast into such a form that their correctness can be verified by looking
at only 3 (!) bits of the proof. The impact of this result on computer science has been unmeasureable.

To transition to its quantum analogue, it is useful to think of a classical PCP as a constraint
satisfaction problem, such that either all contraints are satisfiable or a constant fraction must be
violated. The quantum analogue of a constraint satisfaction problem is the local Hamiltonian problem,
with the ground energy providing the quantum analogue of the number of violated constraints. So the
natural quantum analogue of the PCP theorem would assert that any sum of local Hamiltonians may
be mapped to a new robust local Hamiltonian system such that if the ground energy of the original
system was 0 it remains so, but if it was slightly larger than 0 then it is amplified to a constant.

The possible implications of a quantum PCP theorem are of utmost significance. To begin with,
just as in the classical setting, a quantum PCP theorem would have implications regarding the hardness
of approximate solutions on quantum computers. Second, using the connection drawn in the work of
Aharonov et al between adiabatic computations and the k-local Hamiltonian problem, it is likely that a
quantum PCP theorem might lead to a fault tolerant quantum adiabatic theorem, thus solving a major
open question. Thirdly, a quantum PCP theorem is likely to have interesting implications towards
the understanding of ground states and ground energies of local Hamiltonians. Most importantly, the
attempts to generalize the PCP proof to the quantum world touch upon fundamental issues in quantum
mechanics: the meaning of the no-cloning theorem, and the nature of entanglement. The PCP proof
in the classical case (in particular the simplest recent proof by Dinur) relies heavily on the possibility
to copy bits, which is impossible in the quantum world due to the no-cloning theorem. This does not
rule out a quantum PCP theorem, since as we point out in [7], there is a doubly exponential sized
quantum PCP. The main issue is whether a quantum PCP of reasonable complexity can be realized.
Any answer is likely to shed light on the fundamental notions of entanglement and no-cloning.

We propose to study whether or not the PCP theorem has a classical analog. In the positive
direction, we start with Dinur’s combinatorial proof of the PCP theorem. Dinur’s proof consists of an
iteration of a three step process: preprocessing, gap amplification and alphabet reduction. We report
in [7] that one interesting step in Dinur’s proof of the PCP theorem, namely the gap amplifiction can
be carried out in a quantum setting. The result is non-trivial, and we sketch it below:

The quantum analog of a constraint satisfaction problem is a sum of local Hamiltonians - each
(term of the) Hamiltonian specifies a local constraint whose violation contributes to the energy of the
given quantum state. Formalizing the intuitive connection between the ground (minimal) energy of
the Hamiltonian and the minimum number of violated constraints is problematic, since the number
of constraints being violated is not well defined when the terms in the Hamiltonian do not commute.
The paper starts by establishing the detectability lemma, which provides precisely such a quantitative
connection. Assuming that each particle participates in a bounded number of terms of the Hamiltonian,
the terms can be decomposed into a constant number of layers such that all the terms within a layer
commute with each other. Thus it makes sense to speak about the number of violated constraints
in a given layer. The detectability lemma asserts that the probability that there is a term of the
Hamiltonian in a random layer that is violated is proportional to the energy of the ground state. The
detectability lemma can be used to establish the quantum analog of gap amplification.

Finally, at the technical core of the detectability lemma lies the XY decomposition, which appears
interesting in its own right as a technique for understanding the ground states of local Hamiltonians.
Very roughly, the XY decomposition partitions the Hilbert space into a tensor product of local spaces
and then further decomposes each of these local spaces into commuting (X) and non-commuting parts
(Y ) with respect to the Hamiltonian. This allows for a local analysis of the actions of the individual
terms of the Hamiltonian, the result of which is a parameter for which these actions can be shown to
have exponential decay when restricted to the non-commuting part of the decomposition. A potential
application of the lemma is to resolve the quantum complexity of finding the ground state of a local
Hamiltonian, where all the terms of the Hamiltonian commute.
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Quantum complexity theory:

The quantum adversary method is one of the most successful techniques for proving lower bounds
on quantum query complexity. It gives optimal lower bounds for many problems, has application to
classical complexity in formula size lower bounds, and is versatile with equivalent formulations in terms
of weight schemes, eigenvalues, and Kolmogorov complexity. All these formulations are information-
theoretic and rely on the principle that if an algorithm successfully computes a function then, in
particular, it is able to distinguish between inputs which map to different values.

We present a stronger version of the adversary method which goes beyond this principle to make
explicit use of the stronger condition that the algorithm actually computes the function[8]. This new
method, which we call ADV, has all the advantages of the old: it is a lower bound on bounded-error
quantum query complexity, its square is a lower bound on formula size, and it behaves well with respect
to function composition. Moreover ADV is always at least as large as the adversary method ADV,
and we show an example of a monotone function for which ADV (f) = Ω(ADV (f)1.098). We also
give examples showing that ADV does not face limitations of ADV such as the certificate complexity
barrier and the property testing barrier.

In [9], we present a new variant of the quantum adversary method. All adversary methods give
lower bounds on the quantum query complexity of a function by bounding the change of a progress
function caused by one query. All previous variants upper-bound the di?erence of the progress function,
whereas our new variant upper-bounds the ratio and that is why we coin it the multiplicative adversary.
The new method generalizes to all functions the new quantum lower-bound method by Ambainis based
on the analysis of eigenspaces of the density matrix. We prove a strong direct product theorem for all
functions that have a multiplicative adversary lower bound.

In [10] we study Quantum NP further by attempting to generalize the Valiant-Vazirani theorem
to the quantum setting. This theorem states that the complexity of problems in NP remain (almost)
unchanged even under the promise that the solution is unique; the quantum analogue would read “if the
ground state is unique”. We prove the analogue of the Valiant-Vazirani theorem for the probabilistic
version of NP, namely, MA, as well as for the class QCMA, which is defined like QMA except the
witness is classical. The result implies that one cannot expect efficient descriptions of the sort of MPSs
for one dimensional Hamiltonians with inverse polynomial gap, (unless QCMA=NP, which is believed
to be unlikely). Unfortunately and surprisingly, we prove that the straightforward generalization of
the proof fails for QMA. It is also unclear whether oracle separations such as those used by Aaronson
and Kuperberg to separate QCMA from QMA can be useful here to imply a separation. Whether
Unique-QMA equals QMA is left as an intriguing open problem, with implications to to the physical
question of the possibility of removing redundancy of local Hamiltonians.

Let L be a language decided by a constant-round quantum Arthur-Merlin (QAM) protocol with
negligible soundness error and all but possibly the last message being classical. In [11] we prove that if
this protocol is zero knowledge with a black-box, quantum simulator S, then L ∈ BQP . Our result also
applies to any language having a three-round quantum interactive proof (QIP), with all but possibly
the last message being classical, with negligible soundness error and a black-box quantum simulator.
These results in particular make it unlikely that certain protocols can be composed in parallel in order
to reduce soundness error, while maintaining zero knowledge with a black-box quantum simulator.
They generalize analogous classical results of Goldreich and Krawczyk (1990). Our proof goes via a
reduction to quantum black-box search. We show that the existence of a black-box quantum simulator
for such protocols when L /∈ BQP would imply an impossibly-good quantum search algorithm.
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